Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.09.15.558006

ABSTRACT

Adaptive immunity is generated in lymphoid organs, but how these structures defend themselves during infection in humans is unknown. The nasal epithelium is a major site of viral entry, with adenoid nasal-associated lymphoid tissue (NALT) generating early adaptive responses. Here, using a nasopharyngeal biopsy, we examined longitudinal immune responses in NALT following viral challenge, using SARS-CoV-2 infection as a natural experimental model. In acute infection, infiltrating monocytes formed a subepithelial and peri-follicular shield, recruiting NET-forming neutrophils, whilst tissue macrophages expressed pro-repair molecules during convalescence to promote the restoration of tissue integrity. Germinal centre B cells expressed anti-viral transcripts that inversely correlated with fate-defining transcription factors. Among T cells, tissue-resident memory CD8 T cells alone showed clonal expansion and maintained cytotoxic transcriptional programmes into convalescence. Together our study provides a unique insight into how human nasal adaptive immune responses are generated and sustained in the face of viral challenge.


Subject(s)
COVID-19 , Acute Disease
2.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.10.13.22281024

ABSTRACT

Age is a major risk factor for hospitalization and death after SARS-CoV-2 infection, even in vaccinees. Suboptimal responses to a primary vaccination course have been reported in the elderly, but there is little information regarding the impact of age on responses to booster third doses. Here we show that individuals 70 or older who received a primary two dose schedule with AZD1222 and booster third dose with mRNA vaccine achieved significantly lower neutralizing antibody responses against SARS-CoV-2 spike pseudotyped virus compared to those younger than 70. One month after the booster neither the concentration of serum binding anti spike IgG antibody, nor the frequency of spike-specific B cells showed differences by age grouping. However, the impaired neutralization potency and breadth post-third dose in the elderly was associated with enrichment of circulating atypical spike-specific B cells expressing CD11c and FCRL5. Single cell RNA sequencing confirmed an expansion of TBX21-, ITGAX-expressing B cells in the elderly that enriched for B cell activation/receptor signalling pathway genes. Importantly we also observed impaired T cell responses to SARS-CoV-2 spike peptides in the elderly post-booster, both in terms of IFNgamma and IL2 secretion, as well as a decrease in T cell receptor signalling pathway genes. This expansion of atypical B cells and impaired T cell responses may contribute to the generation of less affinity-matured antibodies, with lower neutralizing capacity post-third dose in the elderly. Altogether, our data reveal the extent and potential mechanistic underpinning of the impaired vaccine responses present in the elderly after a booster dose, contributing to their increased susceptibility to COVID-19 infection.


Subject(s)
Severe Acute Respiratory Syndrome , Death , COVID-19
3.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-637020.v1

ABSTRACT

On 11th March 2020, the UK government announced plans for the scaling of COVID-19 testing, and on 27th March 2020 it was announced that a new alliance of private sector and academic collaborative laboratories were being created to generate the testing capacity required. The Cambridge COVID-19 Testing Centre (CCTC) was established during April 2020 through collaboration between AstraZeneca, GlaxoSmithKline, and the University of Cambridge, with Charles River Laboratories joining the collaboration at the end of July 2020. The CCTC lab operation focussed on the optimised use of automation, introduction of novel technologies and process modelling to enable a testing capacity of 22,000 tests per day. Here we describe the optimisation of the laboratory process through the continued exploitation of internal performance metrics, while introducing new technologies including the Heat Inactivation of clinical samples upon receipt into the laboratory and a Direct to PCR protocol that removed the requirement for the RNA extraction step. We anticipate that these methods will have value in driving continued efficiency and effectiveness within all large scale viral diagnostic testing laboratories.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL